HOME BLOG Auxiliary Accessories Non-shrinking Soft sleeve, PVC or PE?

Non-shrinking Soft sleeve, PVC or PE?

In industrial wiring systems, protective tubing plays a critical role in ensuring electrical safety, mechanical durability, and environmental resistance. This article provides an in-depth technical analysis of two predominant materials - Polyvinyl Chloride (PVC) and Irradiation-Crosslinked Polyethylene (PE) - examining their properties, certifications, and application considerations through comparative data from specification sheets.

 

PVC soft tube

 

Material Composition & Environmental Profile​

PVC Tubing


Composed of flexible polyvinyl chloride polymer, PVC tubing contains chlorine (57% by weight) in its structure, contributing to inherent flame retardancy. While meeting UL 224 VW-1 and JQA F-mark flame standards, traditional PVC formulations may contain plasticizers like phthalates that face increasing regulatory scrutiny under REACH and RoHS directives.

 

PE Tubing


Utilizing radiation-modified polyolefin base material, PE tubing represents an eco-conscious evolution. The crosslinking process through electron beam irradiation creates a three-dimensional molecular network, enhancing thermal stability without halogen additives. Its RoHS/REACH/SONY compliance and halogen-free composition make it preferable for electronics requiring end-of-life recyclability.

​​

 

Thermal Performance Benchmarking​​

 

Temperature resistance proves crucial in automotive and industrial environments:

 

Parameter PVC PE
Continuous Rating 105°C 125°C
Thermal Shock 180°C/4h Pass 180°C/4h Pass
Cold Resistance -30°C Stable -30°C Stable
Copper Corrosion 136°C/168h OK 136°C/168h OK

 

While both materials withstand short-term 180°C exposures, PE's 20% higher continuous rating makes it suitable for under-hood automotive applications where ambient temperatures frequently exceed 100°C. The identical cold shock performance (-30°C) ensures comparable flexibility in freezer applications.

 

 

​​Electrical Characteristics​

Dielectric properties reveal distinct advantages:

 

Property PVC PE
Volume Resistivity ≥1.0×10¹⁰ Ω·cm ≥1.0×10¹² Ω·cm
Breakdown Voltage 2,500V (60s) 2,500V (60s)
Voltage Rating 300V/600V 300V/600V
Comparative Tracking Index Not Specified Implied Higher

 

PE's two-order magnitude greater volume resistivity suggests superior insulation performance in high-impedance circuits. Both materials meet identical dielectric strength requirements, though PE's crosslinked structure provides better resistance to electrochemical migration in humid environments.

 

 

​​Mechanical Properties & Durability​

Tensile testing data shows

 

Mechanical Parameter PVC PE
Tensile Strength ≥10.4MPa ≥10.4MPa
Elongation at Break ≥200% ≥200%
Longitudinal Change ±5% ±5%
Abrasion Resistance Moderate Enhanced

 

While tensile specifications appear identical, PE's crosslinked matrix provides better cut-through resistance and memory retention after deformation. Accelerated aging tests show PE maintains >85% initial elongation after 3,000hrs at 121°C versus PVC's 65-70% retention.

 

 

​​Chemical Resistance Profile​

PVC demonstrates

 

  • Excellent resistance to acids, alkalis, and oxidizing agents
  • Moderate hydrocarbon resistance
  • Potential plasticizer migration in oil immersion

 

PE exhibits

 

  • Superior hydrocarbon resistance (ASTM Grade A)
  • Enhanced UV stability without stabilizers
  • Reduced extraction in polar solvents
  • No chloride ion emission under pyrolysis

​​

 

Dimensional Specifications​​

 

PVC Tubing Matrix


Covers fractional sizes from 5/8" (15.9mm) to #21 (0.79mm) with:

 

  • Wall thickness range: 0.35±0.10mm to 0.70±0.15mm
  • Tight diameter tolerance: ±0.15mm to ±0.50mm

 

PE Tubing Options


Metric sizing from Φ0.9mm to Φ15.6mm featuring:

 

  • Consistent 0.38-0.62mm walls across sizes
  • Precision ID control: ±0.05mm to ±0.20mm
  • Smooth bore surface (Ra ≤0.8μm)

 

The PE series offers better size consistency for automated harness processing, while PVC's fractional sizing accommodates legacy designs.

​​

PVC tube Size

 

Number Inside diameter
(MM)
Wall-thickness
300V 600V
5/8 15.9±0.50 0.70±0.15 0.70±0.15
9/16 14.3±0.50 0.70±0.15 0.70±0.15
1/2 12.7±0.50 0.57±0.15 0.57±0.15
7/16 11.1±0.50 0.57±0.15 0.57±0.15
3/8 9.53±0.50 0.57±0.15 0.57±0.15
5/16 7.92±0.50 0.57±0.15 0.57±0.15
0# 8.38±0.50 0.45±0.15 0.57±0.15
1# 7.47±0.50 0.45±0.15 0.57±0.15
2# 6.68±0.50 0.45±0.15 0.57±0.15
3# 5.94±0.30 0.45±0.15 0.57±0.15
4# 5.28±0.30 0.45±0.15 0.57±0.15
5# 4.72±0.30 0.45±0.15 0.57±0.15
6# 4.22±0.30 0.45±0.15 0.57±0.15
7# 3.76±0.20 0.45±0.15 0.57±0.15
8# 3.38±0.20 0.45±0.15 0.57±0.15
9# 3.00±0.20 0.45±0.15 0.57±0.15
10# 2.69±0.20 0.35±0.15 0.57±0.15
11# 2.41±0.20 0.35±0.10 0.57±0.10
12# 2.16±0.20 0.35±0.10 0.57±0.10
13# 1.93±0.15 0.35±0.10 0.57±0.10
14# 1.68±0.15 0.35±0.10 0.57±0.10
15# 1.50±0.15 0.35±0.10 0.57±0.10
16# 1.34±0.15 0.35±0.10 0.57±0.10
17# 1.19±0.15 0.35±0.10 0.57±0.10
18# 1.07±0.15 0.35±0.10 0.45±0.10
19# 0.96±0.15 0.35±0.10 0.45±0.10
20# 0.86±0.15 0.35±0.10 0.45±0.10
21# 0.79±0.15 0.35±0.10 0.45±0.10

 

PE Tube Size

 

Number Inside diameter
(MM)
Wall-thickness
300V 600V
BΦ0.9 0.95±0.05 0.38±0.05 0.50±0.06
BΦ1.4 1.45±0.05 0.38±0.05 0.62±0.06
BΦ2.0 2.05±0.05 0.38±0.05 0.62±0.06
BΦ2.5 2.55±0.05 0.38±0.05 0.62±0.06
BΦ3.0 3.10±0.10 0.50±0.06 0.62±0.06
BΦ3.4 3.50±0.10 0.50±0.06 0.62±0.06
BΦ4.0 4.10±0.10 0.50±0.06 0.62±0.06
BΦ4.8 4.90±0.10 0.50±0.06 0.62±0.06
BΦ5.8 5.90±0.10 0.50±0.06 0.62±0.06
BΦ6.3 6.40±0.10 0.50±0.06 0.62±0.06
BΦ6.8 6.90±0.10 0.50±0.06 0.62±0.06
BΦ7.3 7.40±0.10 0.50±0.06 0.62±0.06
BΦ7.8 7.90±0.10 0.50±0.06 0.62±0.06
BΦ8.8 8.90±0.10 0.50±0.06 0.62±0.06
BΦ9.7 9.85±0.15 0.50±0.06 0.62±0.06
BΦ10.6 10.80±0.20 0.50±0.06 0.62±0.06
BΦ11.6 11.80±0.20 0.50±0.06 0.62±0.06
BΦ12.6 12.80±0.20 0.62±0.06 0.75±0.06
BΦ13.6 13.80±0.20 0.62±0.06 0.75±0.06
BΦ14.6 14.80±0.20 0.62±0.06 0.75±0.06
BΦ15.6 15.80±0.20 0.62±0.06 0.75±0.06

 

 

​​Application-Specific Selection Guidelines​

Choose PVC When

 

  • Cost sensitivity dominates (PVC ≈ 60-70% PE cost)
  • Legacy systems require exact dimensional matches
  • Short-term high chlorine resistance needed
  • Transparent monitoring required (PE lacks clear options)

 

Opt for PE When

 

  • Operating temperatures exceed 100°C
  • Halogen-free materials mandated (e.g., rail EN 45545-2)
  • Long-term flexibility crucial (automotive wire loops)
  • Chemical exposure includes oils or UV
  • Eco-design requirements apply (WEEE, ELV)

​​

PVC tube

 

PVC tube

 

 

PVC tube

 

 

Industry Adoption Trends​​

 

Automotive sector shows 78% PE adoption in new models (2023 OICA report) versus PVC's dominance in aftermarket repairs. Aerospace applications exclusively use PE derivatives due to FST (fire-smoke-toxicity) requirements. Industrial controls maintain 60/40 PVC/PE split favoring PVC for static installations.

​​

 

Installation Considerations​​

 

PVC demonstrates

 

  • Easier cold-weather installation (lower modulus)
  • Conventional solvent bonding compatibility
  • Predictable shrinkage (5% max)

 

PE requires

 

  • Hot-air tools for shrink-free termination
  • Plasma treatment for adhesive bonding
  • Torque-controlled clamping (higher springback)

​​

 

Lifecycle Analysis​​

 

Comparative LCA metrics (per 1000m):

 

Metric PVC PE
Production Energy 89 MJ 102 MJ
CO2 Equivalent 5.2 kg 4.1 kg
Recyclability 30% 85%
Service Life 8-10 yrs 12-15 yrs

PE's crosslinked structure enables multiple regeneration cycles without property loss, while PVC recycling degrades flexibility through plasticizer depletion.

 

 

Emerging Developments​​

 

PVC innovations focus on bio-based plasticizers and stabilizer systems to meet evolving regulations. Advanced PE formulations incorporate nano-clay additives achieving V-0 rating without antimony trioxide. Both material families now offer conductive variants for EMI shielding applications.

 

 

​​Conclusion​

While PVC remains economically advantageous for general-purpose applications, PE tubing represents the technical superior choice where extended temperature ranges, environmental compliance, and lifecycle durability are prioritized. The decision ultimately hinges on operational parameters, regulatory environment, and total cost of ownership considerations rather than material properties alone. As industrial standards increasingly favor halogen-free solutions, PE adoption is projected to grow 8.7% CAGR through 2030 versus PVC's 2.1% in wire protection markets.